

M.E.G.S. Building Experimental Ecosystem Accounts

London Group, Ottawa

October 2012

<u>François Soulard</u>, Giuseppe Filoso, Gabriel Gagnon, Robby Bemrose, Mark Henry, Pat Adams, Michael Bordt.

Statistics Statistique Canada Canada

Table of Content

- 1. What is MEGS: The project
- 2. Why is MEGS: Policy issues
- 3. MEGS so far: Workgroups results
- 4. MEGS and beyond: Challenges and possibilities

The Project

- Measuring Ecosystem Goods and Services (MEGS) is a 2 year Statistics Canada-led interdepartmental initiative aiming to develop prototype ecosystem accounts to support policy needs of:
 - 1. Environment Canada
 - 2. Agriculture and Agrifood Canada
 - 3. Fisheries and Oceans Canada
 - 4. Natural Resources Canada
 - 5. Parks Canada
- "Virtual" team of 60 mostly part-time staff in 6 departments

The Project (Cont.)

- 1. Build a statistical infrastructure
 - Develop coherent spatial frameworks and georeferenced data
 - 2. Adopt common classifications
- 2. Measure extent and quality of ecosystems
 - 1. Acquire and integrate data
 - 2. Measuring indicators
- 3. Refine approaches to valuation
 - 1. Produce exploratory case studies

General Policy Issues

- 1. Many demands from resource departments:
 - Monetary values of ecosystems and their services to support discussions of protection, conservation, climate change, sustainability, pollution prevention, land use change...
 - Opportunity to raise argument beyond "environment" versus "economy" to understand the real contribution of ecosystems to human well being, sustainability and "green growth"

Specific Policy Issues

1. Environment Canada

- 1. Canadian Environmental Sustainability Indicators (CESI)
- 2. Federal Sustainable Development Strategy (FSDS)
- 3. Data legacy project for the ESTR series of reports that would facilitate reporting under the United Nations Convention for Biodiversity

2. Department of Fisheries and Oceans

- 1. Marine Ecosystem Status and Trends reporting
- 2. Regulatory cost-benefit analysis
- 3. New policy frameworks based on an ecosystems approach

3. Agriculture and Agrifood Canada

1. Integrated Assessment Modelling Systems requires Valuation of ecosystem services and biodiversity to conduct policy-relevant analytical studies and evaluations.

4. Natural Resources Canada

1. Report on Plans and Priorities Enhanced data about ecosystems and biodiversity and related goods and services.

6

The Workgroups

- 1. Ecosystem data accessibility
- 2. Land cover extent and spatial standards
- 3. Landscape condition & environmental quality
- 4. Coastal and marine
- 5. Wetlands
- 6. Valuation

Land cover extent and spatial standards

1. Coherent spatial standards and classifications

2. Standardized spatial data for use by stakeholders

Spatial Attribute Data

- Main criteria for defining / analysing ecosystems
 Landcover / landform / climate / socio-economic variables
- Soil landscapes units = First level Ecosystem Reporting Unit
 Rolls up to ecozone / drainage area hierarchy

•12924 unique ERUs

- Minimum area 1.4 km2
- Maximum area 3500 km2
- Mean area

Statistics Canada • Statistique Canada

Spatial Attribute Data

Component	tahlo -	soil ch	aractorst	ice
Jomponent	table	3011 CI	laractersi	.103

SL	100001	100001
CMP	1	2
PERCENT	69	31
KINDMAT	OR	SO
VEGET	F	с
PMDEP	21	M
CFRAG	*	с
ROOTDP	D	с
DRAIN	P	1
DEVEL	Y	w
CALC	#	0
LOCSF	F01	U
SLOPE	A	A
SNF	NE	NE
SOIL_CODE	PPH	BHP
MODIFIER	E1	E4
LEN_KINDMAT	2	2
LEN_VEGET	1	1
LEN PMDEP	2	1
LEN_CFRAG	1	1
LEN ROOTDP	1	1
LEN DRAIN	1	1
LEN_DEVEL	1	1
LEN CALC	1	1
LEN LOCSE	3	1
LEN SLOPE	1	1
MOD KINDMAT	OR	SO
MOD VEGET	F	c
MOD PMDEP	21	M
MOD CERAG	#	C
MOD ROOTDP	P	C
MOD DRAIN	P	1
MOD DEVEL	Y	w
MOD CALC	#	0
MOD LOCSF	F01	۲ U
MOD SLOPE	A	A
MOD SNF	OR F21DPYF01A	SO C MCIW UA
MOD SOIL CODE	OR F	SO C
MOD MODIFIER		
MOD LEN KINDMAT		
MOD LEN VEGET		
MOD LEN PMDEP		
MOD LEN CERAG		
MOD LEN ROOTDP		
MOD LEN DRAIN		
MOD LEN DEVEL		
MOD LEN CALC		
MOD LEN LOCSE		
MOD LEN SLOPE		
MOD MOD KINDMAT		
MOD MOD VEGET		
MOD_MOD_PMDEP		
THOSE THOSE THISEF		

Environmental Valuation Reference Inventory

Ecodistrict Normals 1961 – 1990

Average daily minimum air temperature (° C)	
Average daily maximum air temperature (degrees Celsius)	
Average daily mean air temperature (degrees Celsius)	
Total rainfall (mm)	
Total snowfall (cm)	
Total precipitation (mm)	
Mean hourly vapour pressure (kilopascals)	
Mean hourly wind speed (km/hr)	
Total duration of bright sunshine (hrs)	
Mean daily global solar radiation (megajoules/sq. metre/day)	
Mean hourly dew point temperature (degrees Celsius)	
	Penman method
Precipitation surplus/deficit (mm)	Thornthwaite method
	Penman PE method
Potential Evapotranspiration and Water Deficit (mm)	Thornthwaite PE method
Growing degree-days above 0 degrees Celsius	
Growing degree-days above 5 degrees Celsius	
Growing degree-days above 10 degrees Celsius	
Growing degree-days above 15 degrees Celsius	
Growing season start (calendar or Julian day)	
Growing season end (calendar or Julian day)	
Growing season length (days)	
Effective growing degree-days	

Socio – economic 2001 - 2011

Selected population characteristics, Canada, ecozones and ecoregions with population, 2011

Factor in a	Turne	0	Total	Total Ecoregion	Pop centre		Total population	Pop centre population as	Rural population as	Total private	Total Ecoregion	Pop centre	Rural	Private dwelling	Population per	Population per	Population per
Ecoregion	туре	Kurai	population	population	population	Kural population	density	share of total population	share of total population	dwellings	dwellings	dwellings	dwellings	density	private dwelling	pop centre dwelling	rural private dwelling
Canada			33476688		27147274	6329414	3.3883	81.1	18.9	14569633		11522042	3047591	1.475	2.30	2.36	2.08
5	Rural	1	520	520	0	520	0.0059	0	100.0	180	180	0	180	0.002	2.89	0.00	2.89
6	Rural	1	934	934	0	934	0.1030	0	100.0	216	216	0	216	0.024	4.32	0.00	4.32
9	Rural	1	5	5	0	5	0.0001	0	100.0	0	0	0	0	0.000	0.00	0.00	0.00
12	Rural	1	214	214	0	214	0.0037	0	100.0	80	80	0	80	0.001	2.68	0.00	2.68
13	Rural	1	130	130	0	130	0.0013	0	100.0	60	60	0	60	0.001	2.17	0.00	2.17
14	Rural	1	61	61	0	61	0.0055	0	100.0	33	33	0	33	0.003	1.85	0.00	1.85
15	Rural	1	51	51	0	51	0.0010	0	100.0	26	26	0	26	0.001	1.96	0.00	1.96
16	Pop Centre	0	1375	2010	1375	0	0.0225	68.4	0	463	732	463	0	0.008	2.75	2.97	0.00
16	Bural	1	635	2010	0	635	0.0225	0	31.6	269	732	0	269	0.008	2 75	0.00	2 36

Statistics Canada • Statistique Canada

15/10/2012

Working towards a Ecosystem Reporting Unit (ERU)

Statistics Canada • Statistique Canada

15/10/2012

Layers

Environmental Valuation Reference Inventory Terra.gdb Aqua.gdb

Attributes

Average daily minimum air temperature (° C)								
Average daily maximum air temperature (degrees Celsius)								
Average daily mean air temperature (degrees Celsius)								
Total rainfall (mm)		-						
Total snowfall (cm)								
Total precipitation (mm)								
Mean hourly vapour pressure (kilopascals)								
Mean hourly wind speed (km/hr)								
Total duration of bright sunshine (hrs)								
Mean daily global solar radiation (megajoules/sq. metre/day)								
Mean hourly dew point temperature (degrees Celsius)								
	Penman method							
Precipitation surplus/deficit (mm)	Thornthwaite method							
	Penman PE method							
Potential Evapotranspiration and Water Deficit (mm)	Thornthwaite PE method							
Growing degree-days above 0 degrees Celsius								
Growing degree-days above 5 degrees Celsius								
Growing degree-days above 10 degrees Celsius								
Growing degree-days above 15 degrees Celsius								
Growing season start (calendar or Julian day)								
Growing season end (calendar or Julian day)								
Growing season length (days)								
Effective growing degree-days								

Salar	Selected nonulation characteristics. Canada, acozones and acoregions with nonulation, 2011																
Jelec	belected population characteristics, canada, ecozones and ecoregions with population, 2011																
	-		Total	Total Ecoregion	Pop centre		Total population	Pop centre population as	Rural population as	Total private	Total Ecoregion	Pop centre	Rural	Private dwelling	Population per	Population per	Population per
tcoregion	Туре	Kural	population	population	population	Kural population	density	share of total population	share of total population	dwellings	dwellings	dwellings	dwellings	density	private dwelling	pop centre dwelling	rural private dwelling
Canada			33476688		27147274	6329414	3.3883	81.1	18.9	14569633		11522042	3047591	1.475	2.30	2.36	2.08
5	Rural	1	520	520	0	520	0.0059	0	100.0	180	180	0	180	0.002	2.89	0.00	2.89
6	Rural	1	934	934	0	934	0.1030	0	100.0	216	216	0	216	0.024	4.32	0.00	4.32
9	Rural	1	5	5	0	5	0.0001	0	100.0	0	0	0	0	0.000	0.00	0.00	0.00
12	Rural	1	214	214	0	214	0.0037	0	100.0	80	80	0	80	0.001	2.68	0.00	2.68
13	Rural	1	130	130	0	130	0.0013	0	100.0	60	60	0	60	0.001	2.17	0.00	2.17
14	Rural	1	61	61	0	61	0.0055	0	100.0	33	33	0	33	0.003	1.85	0.00	1.85
15	Rural	1	51	51	0	51	0.0010	0	100.0	26	26	0	26	0.001	1.96	0.00	1.96
16	Pop Centre	0	1375	2010	1375	0	0.0225	68.4	0	463	732	463	0	0.008	2.75	2.97	0.00
16	Rural	1	635	2010	0	635	0.0225	0	31.6	269	732	0	269	0.008	2.75	0.00	2.36

Spatial analysis – define landscape unit by ecozone or drainage area hiearchy

Proximity analysis – wetlands / settled areas

Temporal analysis - Land cover change over time

Scenario analysis - Valuation - determine areas with similar ecosystem services

Spatial Statistical Units

N.B. Also rolls roll up to drainage and administrative classifications

Landscape Condition & Environmental Quality Working Group

1- Coordinate classification and integration of biophysical data

2- Indicators/metrics of ecosystem quality review of recent progress

Landscape ecological potential

 Index based on land-use, protected areas and fragmentation (inspired by the work of Weber and Spyropoulou (EEA) and Soukup and Páramo (ETCLUSI)

NLEP = $\sqrt{(favourable to nature index + protected index))} x fragmentation index$

Statistics Canada • Statistique Canada

Local case study – St Lawrence Islands National Park (SLINP)

- One of the smallest national parks in Canada
 - 19 km² (vs Wood Buffalo's 44 807 km²)
- Fragmented and discontinuous

Local case study – St Lawrence Islands National Park (SLINP)

 Selected main EGS will be measured by biome and integrated into CICES

Partial ecosystem acc						
Ecosystem type	Area	Quality	PS: Agriculture	CS: Recreation	CS: Aesthetic/amenity	Total
Wetlands						
Lakes/rivers						
Forests						
Woodland and shrubland						
Grass/rangeland						
Ice/rock/polar						
Cultivated						
Urban (settled)						
PS = Provisioning service						
CS = Cultural service						
Ecosystem types from MEG	Soverviev	v, 01DEC20:				

Proposed case study: SLINP area

- Vulnerable to external pressures
- Propose to update these pressures maps

Statistics Canada • Statistique Canada

Biomass extraction

- Map of biomass extracted from Canada, including terrestrial and freshwater landscapes
 - Started background research for data layers in order to piece together a Canadian biomass extraction map
 - Idea is to overlay with similar map for coastal areas and have complete map of Canada

Coastal and Marine

1. Focus on coastal and marine data integration

2. Socio-economic dimensions (coastal population, resources, etc.)

Total Biomass Extraction 2006

Species Group	
	Metric tonnes
Groundfish	108,948.7
Shellfish	464,519.0
Pelagics	261,385.3
Other	46,772.8

Total 881,625.8

Department of Fisheries and Oceans, Zonal Interchange Format File (ZIFF) Catch and Effort Database.

Blocks with Fishing Employment – Distance from Shoreline 2006

Population Employed in Fishing Industry – Distance from

Shoreline 2006

Percent Population Working in Fishing Industry of the Total Population Working in the Fishing Industry With Distance from Shoreline

*Percent was calculated using population working in fishing industries within 100 km of shoreline.

Statistics Canada • Statistique Canada

Population per Ecodistrict 2006

Wetlands

1. Integrated study of wetlands extent, quality and values

Wetlands Working Group Overview

Indicator and account work

- Estimates of nutrient processing, carbon sequestration and flow attenuation services
- Estimates of population pressures and population benefits, and possible replacement costs

Case study(s)

- Assiniboine drainage basin examples
- Completed research on up-scaling, transfer, meta-analysis, regression, land cover, biophysical estimation etc..

Contextual approach – non-monetary valuation

- Producing spatial data to understand individual wetlands in their socio-economic and bio-physical setting.
- Analysing the contextual data to determine "value"
- Deriving characteristic data such as GDP or income of surrounding population, scarcity, total population, bio-physical, upstream and downstream characteristics etc...
- Following European studies (scaling up) European Environmental Agency, Fondazione Eni Enrico Mattei and Brander et al.

Draft Wetland Asset Account

Draft** and simplified ecosystem classification and account for (Canadian) wetlands with examples

Categor Type Comments and examples (and/or total) (m2 or th) Categor Variable Variab		Services	Class of Wetland	Land Area		Geography (SDA or	Functional value			Monetary value				
Category Type Comments and samples (with thin) Quarky Curve Value Value and unt Quarky Curve Value Value and unt Quarky Curve Value Value and unt Quarky Curve Value Value Value and unt Quarky Curve Value Value and unt Quarky Curve Value Value and unt Quarky Curve Value Value Value and unt Quarky Curve Value Value and unt Quarky Curve Value Value Value and unt Quarky Curve Value Value <th< th=""><th></th><th>-</th><th>(and/ortotal)</th><th>(km2 or ha)</th><th></th><th>Ecozono)</th><th></th><th></th><th>Quality</th><th></th><th></th><th>Quality</th><th></th></th<>		-	(and/ortotal)	(km2 or ha)		Ecozono)			Quality			Quality		
Provision is Ford production of fish, wild game, fuilts, and grains image: fish of the second o	Category	Туре	Comments and examples			Quality	Leozonej	Variable	value and unit	Quality	Method	value and unit	Quality	
Food production of fish, wild game, funds, and grants a torg and releting of water for domestic, and aground mutuatrial, and aground water for domestic, and aground mutuatrial, and eground mutuatrial, and eground mutuatrial species, and so on pathogens, ormenetal species, and so on pathogens, ormenetal species, and so on one difference of and sink for greenhouse gases; influence inclusion of the regulation of the regulation and the regulation and the regulation found; flucharge rates and/or total So A sequestering carbon Mgyr as rate or or Mgyr as rate and (Mgyr as rate and (Or total water rate) pathogens, shallow water and/or total \$\$ SDA sequestering carbon Mgyr as rate or Mgyr as rate and (Mgyr as rate and (Or total water recents) and green control and green anternance, habita protection, adverse and (Mgyr as rate and (Mgyr as rate) as and (Mgyr as r	Provisioning													
Potable water a storage and referention of water for domestic, industrial, ad griouth values in a storage and referention of water for domestic, and so in the regulation of water for domestic, and so in the regulation of water for domestic, and so in the regulation of water for domestic, and so in the regulation of water for domestic, and so in the regulation of water for domestic, and so in the regulation of water for domestic, and so in the regulation of water reduced for the r		Food	production of fish, wild game, fruits, and grains											1
Image: section set is all problem of the section set is all problem of precisions or maneral sequences, and so in precisions or menables (section, so maneral sequences, and so in precisions) and sequences is source of and antify for greenhouse gases; sinduces and so inter or menables (section, so inter or grand and regional temperature, precipitation, and the regulation of tables; precisions and sequences is source of and antify for greenhouse gases; sinduces and source of and antify greenhouse gases; sinduces and source of and antify for greenhouse gases; sinduces and source of and antify greenhouse gases; sinduces and antify greenhouse gases; sinduces and source of and antify greenhouse gases; sinduces and greenhouse gases; sinduces and source of antify greenhouse gases; sinduces and greenhouse gases; sinduces andify greenhouse gases; sinduces andify greenh		Potable water	a storage and retention of water for domestic, industrial, and agricultural use											l
Image: Nergyrenewable biolutes - plant or animal based resourcesImage: NergyImage: Nergy <td></td> <td>Biotic materials</td> <td>genetic material, genes for resistance to plant pathogens, ornamental species, and so on</td> <td></td>		Biotic materials	genetic material, genes for resistance to plant pathogens, ornamental species, and so on											
Regulating mode mode <td></td> <td>Energy</td> <td>renewable biofuels - plant or animal based resources</td> <td></td> <td>1</td>		Energy	renewable biofuels - plant or animal based resources											1
Line Curve of and sigk for greenhouse gases; influence local and regional temperature, precipitation, and other dimatic processes (coling) Bog, Fen, Marsh, swamp, Shallow wamp, Shallow wamp, Shallow wamp, Shallow wamp, Shallow wamp, Shallow wamp, Shallow wamp, Shallow wamp, Shallow water and/or total SDA sequestering carbon Mg/yr as rate or Mg total /r. x% Image: Mg total Mg total /r. x% Mg total Mg total /r. x% Mg total Mg total <td>Regulating</td> <td>- 0/</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>Ē</td>	Regulating	- 0/	· · · · · · · · · · · · · · · · · · ·											Ē
Image: Regulation of block environment Image: Regulation		Climate regulation	source of and sink for greenhouse gases; influence local and regional temperature, precipitation, and other climatic processes (cooling)	Bog, Fen, Marsh, Swamp, Shallow water and/or total			SDA	sequestering carbon	Mg/yr as rate or Mg total	+/- x%			+/- x%	
Image: series of the sequence of the second series of the seco		Regulation of biotic environment	life cycle maintenance, habitat protection, cover, pest and disease control and gene pool protection											
Image: section of the policities of		Water flow regulation	attenuation of runoff, discharge rates and waves - groundwater recharge/discharge - mass flows											
Pollination habitat for pollinators Image: Soil regulation habitat for pollinators Image: Soil regulators		Water purification and waste treatment	retention, recovery, and removal of excess nutrients and other pollutants	Bog, Fen, Marsh, Swamp, Shallow water and/or total			SDA	beneficial phosphorous mitigation	P kg/km2/year	+/- x%	replacement (WWT)	\$ per yr startified by facility size	+/- x%	
soil regulation soil fertility and structure maintence - sediment, organic matter and nutrient retention, accumulation and cycling soil fertility and structure maintence - sediment, organic matter and nutrient retention, accumulation and cycling soil fertility and structure maintence - sediment, organic matter and nutrient retention, accumulation and cycling soil fertility and structure maintence - sediment, organic matter and nutrient retention, accumulation and cycling soil fertility and structure maintence - sediment, organic matter and nutrient retention, accumulation and cycling soil fertility and structure maintence - sediment, organic matter and nutrient retention, accumulation soil fertility and structure maintence - sediment, organic matter and nutrient retention, accumulation soil fertility and structure maintence - sediment, organic matter and nutrient retention, accumulation soil fertility and structure maintence - sediment, organic matter and nutrient retention, accumulation soil fertility and structure maintence - sediment, organic matter and nutrient retention, accumulation soil fertility and structure maintence - sediment, accumulation soil fertility and structure main		Pollination	habitat for pollinators											
Cultural Cultural Collection Collection <thcollection< th=""> <thcollection< th=""></thcollection<></thcollection<>		Soil regulation	soil fertility and structure maintence - sediment, organic matter and nutrient retention, accumulation and cycling											
Spiritual and inspirational source of inspiration; many religions attach spiritual and religious values to aspects of wetland ecosystems and religious values to aspect to aspe	Cultural													
Recreational opportunities for recreational activities Image: Comparison of the comparison of t		Spiritual and inspirational	source of inspiration; many religions attach spiritual and religious values to aspects of wetland ecosystems											
Aesthetic people can find aesthetic value in aspects of wetland ecosystems cosystems cosystems<		Recreational	opportunities for recreational activities											Ē
Educational opportunities for formal and informal education and training opportunities for formal and training opportunities formal and training opportuniti		Aesthetic	people can find aesthetic value in aspects of wetland ecosystems											
* General hybrid of MEA (wetlands) and CICES with some consideration to TEEB and AB study ** the primary intent of this account is to assist working group in the selection of services to measure		Educational	opportunities for formal and informal education and training											l
** the primary intent of this account is to assist working group in the selection of services to measure	* General hybri	id of MEA (wetlands) and	CICES with some consideration to TEEB and AB study											
	** the primary	intent of this account is to	o assist working group in the selection of services to r	neasure										

1. Appropriate valuation methods

 Links to SNA (System of National Accounts) and SEEA (UN System of Environmental-Economic Accounts)

Valuation group research questions

- Marginal vs. Total/Ag Values
- Double Counting
- Protocol for Benefits Transfer
- Scaling Up

Provide guidelines to MEGS Partners

- on selection and use of valuation approaches
 - link ecosystem service types (e.g. aesthetic services) to documentation on methodologies and best practices for valuation of those services
- incorporates some of the answers to the Valuation Working Group's research questions,
 - e.g. when to use marginal vs. average values for valuation.
 - How to integrate socio-economic information within a spatial context to help modify and transfer benefits (or demand functions)

Developing a benefits transfer process flow for MEGS

- spatial infrastructure
- geo-referenced valuation study data from policy (donor) sites
- and, guidelines to facilitate benefits transfer in a spatially explicit way

St. Lawrence Islands National Park Extent

Developing a benefits transfer process flow for MEGS

- St. Lawrence Islands National Park case study area (and possibly other case study areas) will provide a test case
- Will confront the value transfer estimates for the SLNP case study area to compare with OMNR estimates received
- Learning as we go

Main problems?

- Lack of original valuation studies; consistency of valuation methods; auxiliary/meta data from studies
- Scaling up methods still young
- Meta analysis to create transfer functions is difficult
- Time and resources a constraint

Conclusion

- 1. MEGS is exploring various aspects of Ecosystem Accounting
 - Will provide feedback to SEEA II process
- 2. MEGS' results will be synthesized in *Human* Activity and the Environment 2013
- 3. There are plans to continue R&D on MEGS issues
- 4. The challenge will be to keep the community of practice moving forward with the same
 ⁵²momentum. Statistics Canada Statistique Canada

Merci.

François Soulard

Section Chief Environment Accounts and Statistics <u>francois.soulard@statcan.gc.ca</u> Telephone | Téléphone 613-951-1777 Facsimile | Télécopieur 613-951-0634